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The microbial communities colonizing the human gut are

tremendously diverse and highly personal. The composition and

function of the microbiota play important roles in human health

and disease, and considerable research has focused on

understanding the ecological forces shaping these communities.

While it is clear that factors such as diet, genotype of the host, and

environment influence the adult gut microbiota community

composition, recent work has emphasized the importance of

early-life assembly dynamics in both the immediate and long-

term personalized nature of the gut microbiota. While the mature

adult gut microbiota is believed to be relatively stable, the

developing infant gut microbiota (IGM) is highly dynamic and

prone to disruption by external factors, including antibiotic

exposure. Studies have revealed both transient and persistent

alterations to the adult gut microbiota community resulting from

antibiotic treatment later in life. As antibiotics are routinely

prescribed at a greater rate in the first years of life, the impact of

these interventions on the developing IGM is emerging as a key

research priority. In addition to understanding the impact of these

disruptions on the infant gut microbial architecture and related

host diseases, we need to understand the contribution of early life

antibiotics to the selection of antibiotic resistance gene reservoirs

in the microbiota, and their threat to successful treatment of

infectious disease. Here we review the current understanding of

the developmental progression of the IGM and the impact of

antibiotic therapies on its composition and encoded reservoir of

antibiotic resistance genes.
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Introduction
Antibiotics are the most prescribed medications in neona-

tal and pediatric populations in the United States [1–3]. In

neonatal intensive care units (NICUs), ampicillin and

gentamicin are prescribed twice as frequently as the next

most common medication [2]. In children age 0–18, anti-

biotics are prescribed to more than 50% of individuals [1]

and account for approximately 25% of prescriptions, with

amoxicillin, azithromycin, and amoxicillin/clavulanate be-

ing the most common [3]. Antibiotic perturbation of the

actively developing infant gut microbiota (IGM) has pro-

found impacts on human health and disease throughout

life, as alteration of the gut microbiota during this time-

frame may disrupt metabolic and immune development

[4��]. Equally important is the potential enrichment of the

reservoir of antibiotic resistance genes (‘resistome’) avail-

able for transfer to pathogens [5], compromising treatment

of infections in vulnerable populations. The phylogenetic

and resistome composition of the IGM is connected, yet

dynamic, with gut environment and antibiotic pressure

increasing opportunities for horizontal gene transfer [6–8].

Until recently, the response of the IGM and its resistome

to antibiotic perturbation was largely characterized by

culture-based or PCR-based experiments [9�,10–12],

which underestimate novel resistance genes. This re-

sponse can be influenced by many factors, including

antibiotic spectrum, duration, and delivery route (oral

versus intravenous), as well as microbial community com-

position and antibiotic susceptibility. While it is clear that

antibiotics disrupt the developing gut microbiota, elimi-

nating taxa and enriching for antibiotic resistance genes

(ARGs), we are just beginning to understand the relative

contribution of each of these factors to the community-

wide taxonomic and functional response to antibiotics.

Definitions and key concepts
Developmental progression: the normal patterned suc-

cession of bacterial species colonizing the infant gut in

the absence of disruptive perturbation.

Antibiotic resistome: the collection of ARGs encoded in a

microbial community.

Metagenomic functional selections: shotgun cloning and

heterologous expression of microbial community

DNA in model organisms to interrogate specific func-

tions, for example, antibiotic resistance.

Preterm infant: infants born <33 weeks gestational age.

Very low birth weight infant: infants weighing <1500 g at

birth.
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Normal IGM and resistome development
The normal developmental progression of the IGM is

patterned, yet highly dynamic and individual specific, and

is shaped by many factors, including host physiology,

genetics, diet, and environment [13,14��,15]. Upon birth,

infants are exposed to a surge of microbes that colonize

the epithelial surfaces, including the gastrointestinal sys-

tem. The source and composition of this inoculating

bacterial community is highly dependent on gestational

age at time of delivery and, for term infants, mode of

delivery [14��,16,17]. Term infants born vaginally are

initially colonized by microbial communities resembling

maternal vaginal microbiota (enriched in Lactobacillus and

Prevotella spp.), while those delivered by caesarean sec-

tion harbor communities that more closely resemble the

skin microbiota (enriched in Staphylococcus and Propioni-
bacterium spp.) [16]. For preterm infants (gestational age

<33 weeks) the early gut microbiota composition resem-

bles bacterial communities colonizing hospital surfaces

and feeding and intubation tubing and are enriched in

Staphylococcus epidermidis, Klebsiella pneumoniae, and

Escherichia coli [18�]. Mode of delivery in preterm infants

does not appear to significantly affect the initial coloniz-

ing community and is instead hypothesized to be highly

influenced by environment [18�,19]. Following initial

colonization, term and preterm IGM alike begin to in-

crease in diversity with continual dynamic turnover in

bacterial composition driven primarily by chronological

age; however, specific bacterial succession patterns are

unique to these two populations [13,14��,19]. The most

notable difference in succession patterns between infant

populations includes an enrichment in Proteobacteria at

<2 weeks in preterm infants. A detailed time series of a

single term infant revealed the developing IGM is ini-

tially dominated by Firmicutes, with low levels of Pro-

teobacterial species introduced in the first week of life

and persisting as minor components (<10% relative abun-

dance on average) throughout the first 2.5 years of life

[20�]. By contrast, preterm IGM are quickly dominated by

Proteobacterial species within the first week of life and

maintain high levels, comprising on average >75% rela-

tive abundance of the community, throughout the first

month [14��,21]. In healthy term infants there is a dra-

matic increase in Bifidobacterium and Bacteroides spp.

within the first six months of life. By the end of the first

year of life the IGM begins to resemble an adult-like

microbiota, reaching full maturity by 2–3 years of age

[13,15,20�]. It is still unclear if preterm infants eventually

follow a similar developmental pattern once ‘caught up’

to term infants in postmenstrual age (gestational age plus

chronological age) or if this population is set on a unique

developmental trajectory.

The functional capacity encoded in the IGM also changes

dramatically in the first year of life. In term infants, a shift

is observed from lactose metabolism when diet is com-

prised of human milk and formula, to polysaccharide
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utilization upon the introduction of solid foods [20�].
While the gut-associated resistome comprises epidemio-

logically important functions, less is known about how

this reservoir of genes develops in early life. Recent

studies have shown that ARGs in the IGM are established

within the first week of life, even in the absence of

antibiotic exposure [22,23��,24,57]. Most investigations

of the early resistome have employed culture-based or

PCR-based methods [9�,10–12]. Focusing on readily cul-

turable bacteria and previously identified ARGs vastly

underestimates the diversity and abundance of ARGs in

the gut microbiome [5]. To overcome these challenges, a

recent study used culture-independent methods to char-

acterize the gut resistome of 22 healthy infants and

children aged one month to 19 years [23��]. Employing

high-throughput functional metagenomic selections [25],

the authors demonstrate that the healthy pediatric gut

resistome is established early in life and persists through-

out childhood. Of the 18 antibiotics investigated, only

gentamicin demonstrated age-discrimination indepen-

dent of antibiotic exposure with children >12 months

of age harboring significantly higher levels of gentamicin

resistance compared to younger children [23��].

Early-life antibiotics and the human
microbiota
Preterm or very low birth weight infants are at highest risk

for antibiotic associated perturbations, as they routinely

receive empiric antibiotic therapy at birth [26,27�]. As

with adults, short-term perturbations of the IGM follow

soon after antibiotic treatment, the broad characteristics

of which are known through culture-based methods [28].

Recently, culture-independent methods for interrogating

microbial communities have emerged, relying on DNA

amplification and sequencing. When applied to the de-

veloping IGM, some studies suggest both phylogenetic

diversity and microbial load are depressed following

antibiotic therapy. For example, 16S rRNA-based phylo-

genetic profiling of fecal microbiota from preterm infants

receiving ampicillin and gentamicin during the first week

of life had lower diversity compared to un-treated infants

[27�]. However, another study comparing the fecal micro-

biota composition of infants treated with oral cephalexin

to infants receiving no treatment did not reveal significant

differences during the month following therapy [29].

These differing findings may be due to different antibi-

otic regimens, routes of antibiotic administration, choice

of statistical analytical methods, or other uncontrolled

factors. The difficulties inherent to untangling these

variables informs both the need for large cohort studies

of specific antibiotic regimens and studies in controlled

animal models. Bacterial load is another measure found to

decrease in some studies but not in others. Quantitative

PCR of 16S rRNA has been used to estimate bacterial

load in the gut. In unrelated studies examining the IGM

following antibiotic therapy, bacterial load was found to

be unaffected, slightly altered, profoundly decreased, or
www.sciencedirect.com
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even increased following treatment [15,30]. Again, the

lack of a consensus may be due to uncontrollable variables

inherent to infant cohorts.

Antibiotic treatment can also target specific phylogenetic

subgroups of the IGM. Treatment of preterm infants with

a variety of antibiotics, including penicillin, ampicillin,

cephalexin, gentamicin, amikacin, erythromycin, vanco-

mycin, clindamycin, and teichomycin, have been found to

increase the percentage of potentially pathogenic Enter-

obacteriaceae while lowering the relative percentage of

microbial taxa linked to a healthy microbiota such as

Bifidobacteriaceae, Bacilli, and Lactobacillales spp.

[27�,29,30]. In mice, reproducible effects on taxa have

been noted. In mice exposed to subtherapeutic antibio-

tics through drinking water, no overall change in micro-

bial load was detected, but a significant decrease in the

ratio of Bacteroides to Firmicutes was observed [31]. In

another study examining the consistency of phylogenetic

responses to antibiotic perturbation, mice were treated

with amoxicillin, metronidazole, bismuth, cefoperazone,

and in combination. Under these conditions Proteobac-

teria, and in particular Enterobacteriaceae, dominated the

intestines of the treated animals immediately after cessa-

tion of therapy, accounting for 73% of sequences. After

two weeks without perturbation the microbiota of these

animals returned to a low percentage Proteobacteria state

(5.77%), though still higher than in untreated mice

(1.2%). Treatment with cefoperazone, a broad-spectrum

antibiotic, was in particular associated with loss of micro-

bial diversity without recovery even six weeks post thera-

py [32]. In another study in which mice were administered

either vancomycin or streptomycin in their drinking water,

only vancomycin treatment was associated with significant

reductions in both bacterial load and diversity, including

depletion of Bacteroidales and marked enrichment of

Lactobacillus spp. [33]. An important variable in several

studies is the route of antibiotic administration. In many

mouse studies, antibiotics are provided through the most

facile means available, for example, through the animal’s

water supply or, in the case of infant mice, through the

mother via milk [4��,31]. This is in stark contrast to

antibiotic administration in the NICU, where the majority

of antibiotics are provided through intravenous lines

[14��]. A recent study in mice found significant differences

when tetracycline or ampicillin were administered orally

versus intravenously, highlighting the importance of this

variable in evaluating the translational significance of

murine model systems [34].

Long-term effects of early-life antibiotic
therapy
Infants exposed to antibiotics during microbiota devel-

opment may experience long-term disruptions. For ex-

ample, disruptions have been noted at 90 days following

treatment with a variety of antibiotics and three months

after treatment with oral amoxicillin [30,35]. However,
www.sciencedirect.com 
some studies have found no long-term microbial disrup-

tions due to antibiotic use in human infants [15]. In mice,

lack of recovery from antibiotic treatment at six weeks has

been noted [32] and even subtherapeutic antibiotics have

been found to have long-term effects on taxa associated

with healthy microbiota such as Lactobacillus spp., Bifi-

dobacteriaceae (decreased abundance) and Enterobacter-

iaceae (increased abundance) [4��,29].

Early-life antibiotic therapy has been linked to a variety

of host outcomes and antibiotic-disrupted taxa have been

linked causally to these as well. Broadly, antibiotic thera-

py can enrich for potentially pathogenic and antibiotic

resistant Enterobacteriaceae, a bacterial family common-

ly resistant to beta-lactam antibiotics [27�,30]. Antibiotic

therapy in infants has further been linked to increased

risk of developing necrotizing enterocolitis (NEC), the

leading cause of morbidity in NICU infants [36]. In one

study of preterm infants, empiric antibiotic therapy last-

ing >5 days was associated with a significantly increased

rate of sepsis, NEC, and death, with an attributable risk of

32 per 100 infants [26]. Another retrospective study of

extremely low birth weight infants found that courses of

antibiotics >5 days in the first days of life were statisti-

cally linked to increased risk of developing NEC and

higher mortality rates. It was found that each additional

day of antibiotic treatment increased the odds of an infant

developing NEC by �7% or developing NEC and dying

by �4% [37]. In these studies causative taxa were not

identified. However, other studies have demonstrated

loss of Lactobacillus and Bifidobacterium spp. and increased

Enterobacteriaceae as a result of antibiotic treatment

[4��,29]. Taxa from the Lactobacillaceae and Bifidobac-

teriaceae families have been linked to the prevention of

poor outcomes in infants and are known to be important

components of a healthy developing IGM and originate

from the maternal microbiome [15,17]. Probiotic treat-

ment of very low birth weight infants with Lactobacillus
acidolphilus and Bifidobacterium infantis has been shown to

reduce morbidity in these cohorts, as well as increase daily

weight gain and decrease hospital stay times [38,39]. One

potential mechanism of this protection is through inter-

actions between the gut microbiota and the host immune

system. Specific taxa, such as Lactobacillus spp., have been

shown in model organisms to promote a healthy gut

immune response and healthy modulation of the intesti-

nal epithelial layer [40]. Perturbation of the maternal and

IGM in a murine model was also found to modulate the

levels of the IL-17 cytokine, leading to increased suscep-

tibility to sepsis [41]. Outside of infancy, early life anti-

biotic use has also been linked to the development of

other conditions later in life. Recent studies using a

murine asthma model have found evidence implicating

antibiotic-induced dysbiosis in increasing asthma rates

later in life [33]. Similarly, antibiotics have been found to

play a role in the induction of hypersensitivity pneumo-

nitis [42]. Antibiotic treatment has also been linked to
Current Opinion in Microbiology 2015, 27:51–56
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obesity. Children exposed to antibiotics in the first six

months of life were found to have a statistically significant

increase in body mass. On the other hand, children treated

with other medications or antibiotics after six months of

life showed no such correlation [43]. In another study,

antibiotic exposure during the first year of life was found to

be associated with being overweight at age 12, with the

association particularly strong in males [44]. Similar effects

have been seen in mice under controlled conditions. In a

pair of studies in which subtherapeutic antibiotics were

administered to infant mice, treatment was found to

induce metabolic changes in the host, including increased

adiposity, modulation of liver mechanisms for cholesterol

and lipid metabolism, and increased susceptibility to a

high fat diet. Furthermore, these effects were directly

linked to changes in the gut microbiota, including phylo-

genetic composition and metabolic function, and were

found to transfer following administration of an altered

microbiota to a healthy host [4��,31].

Enrichment of the infant antibiotic resistome
Significant alterations in the composition of the develop-

ing IGM in response to antibiotic treatment can cause a

similar transformation in functional capacity, the most

clinically relevant example being antibiotic resistance.

When exposed to constant antibiotic challenge in vitro,

microbial communities show evolution of multidrug resis-

tance [45] as well as population-level resistance dynamics

to antibiotic stress [46]. While the routes of evolution of

antibiotic resistance and community-level dynamics are

less well known in vivo, antibiotic therapy has been shown

to select for survival of resistant members of the microbial

community or for members capable of acquiring ARGs

[47]. The persistence of these populations after cessation

of therapy poses a long-term threat to the host as these

populations can include potential pathogens as well as act

as reservoirs for ARGs for transfer to pathogens [48,49].

For example, in a pair of studies in adults, treatment with

clindamycin for seven days resulted in rapid development

of resistant Bacteroides spp., with resistant clones consti-

tuting �15% of the clones in the treated cohort compared

to �0% in the control cohort. This condition persisted

through the entire 2-year study. Similarly, the macrolide

resistance gene ermF was several logs higher in treated

adults than in control and persisted for at least two years

[11,50]. In another study, 1000-fold enrichment of the

macrolide resistance gene ermB was found following treat-

ment with clarithromycin and metronidazole, and was

observed up to four years later even in the absence of

additional antibiotic therapy [10]. While comparable stud-

ies on the effect of antibiotics on the IGM in early life are

lacking, one similar culture-based study examined the oral

microbiota of children treated with the antibiotic amoxi-

cillin. Surprisingly, amoxicillin resistant bacteria were

found both in children with and without drug treatment.

In addition, approximately 50% of the amoxicillin resistant

isolates also showed resistance to penicillin, with others
Current Opinion in Microbiology 2015, 27:51–56 
also demonstrating resistance to erythromycin and tetra-

cycline [35].

Notably, the route of antibiotic administration can strong-

ly impact the emergence of resistant populations in the

gut. Mice provided with an oral inoculum of either

tetracycline or ampicillin resistant bacteria were admin-

istered each corresponding antibiotic either orally or

intravenously. The expansion and contraction of the

known resistance genes in the resistant bacteria were

monitored by quantitative PCR. Oral administration of

ampicillin was found to result in an approximate 4-log

increase in ampicillin resistant gene copy number over

intravenous administration, while the increase seen for

oral administration of tetracycline was �2-log. The dif-

ference in effect was hypothesized to be a result of how

the host clears each antibiotic, with ampicillin being

cleared solely through the urine and not interacting with

the gut microbiota [34].

Conclusions
Given the exceedingly personalized nature of the human

gut microbiota, we anticipate that highly sampled, longi-

tudinal infant cohort studies combined with controlled

mouse models of therapeutic levels of antibiotic treatment

will begin to deconvolute the forces shaping these devel-

oping microbiota and their encoded ARGs. As we begin to

understand more about the extent to which antibiotic

resistance spreads within and between microbial ecosys-

tems, there has been a concurrent increase in emphasis on

addressing the challenge of antibiotic resistance from an

ecological perspective [9�]. Importantly, this approach

requires characterization of the overall abundance and

diversity of ARGs in the environment and human-associ-

ated microbial communities [51,52]. Using culture-inde-

pendent metagenomic and functional metagenomic

techniques, recent studies have shown the human gut

microbiota to be an extensive reservoir of ARGs [53,54],

the abundance of which has been broadly correlated with

antibiotic use practices by country [55�]. While a number

of studies described above have demonstrated a significant

response of specific drug-resistant strains or specific ARGs

to antibiotic therapies using culture or PCR-based meth-

ods, the effect of antibiotics on community-wide antibiotic

resistance remain unclear. Functional metagenomic stud-

ies of ARGs harbored in the guts of healthy infants reveal

high potential for mobilization and overall disconnection

between ARG and bacterial host [23��], suggesting a much

more complicated relationship between the community

composition and functional response to antibiotic resis-

tance in the developing gut. Integration of culture-inde-

pendent methods for community-wide investigation of

corresponding community composition and functions,

such as metagenomic functional selections [25] combined

with marker or shotgun DNA sequencing [56], will be

essential in filling in the current gaps in our system-wide
www.sciencedirect.com
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understanding of the effects of antibiotics on developing

IGM and resistomes.
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